粉末冶金新材料都有哪些?
作者:翔宇粉末冶金制品
發(fā)布時(shí)間:2022-11-28 15:50:45
來(lái)源:本站 閱讀數量:1198次 點(diǎn)贊數量:932次
(1)粉末冶金高速鋼
傳統熔煉鑄造法制造的高速鋼,其鋼錠不可避免會(huì )產(chǎn)生合金成分不均和粗大萊氏體偏析,這已成為其組織結構的瘤疾,長(cháng)期困擾著(zhù)冶金學(xué)家。正是粉末冶金工藝成功解決了傳統冶金工藝這一問(wèn)題,消除了宏觀(guān)偏析,使晶粒細化,性能顯著(zhù)提高且各向同性,為生產(chǎn)超高合金含量高速鋼提供了可行途徑。1965年,美國CrucibleMaterials公司發(fā)明粉末冶金高速鋼,1971年投產(chǎn),年產(chǎn)量1200t,以CPM(CracibleParticleMetallurgy)系列共10余個(gè)牌號銷(xiāo)售。瑞典Soderfors公司是世界上生產(chǎn)這種鋼材的最大廠(chǎng)家之一,其氣霧化一熱等靜壓生產(chǎn)線(xiàn)于1970年投產(chǎn)。1994年,法國高速鋼公司(Erasteel)所屬瑞典Soderfors廠(chǎng)采用鋼包精煉法(Electro-Slag-Heating,ESH)對氣霧化前鋼液進(jìn)行精煉,將非金屬夾雜減少90%,獲得高純凈鋼,進(jìn)一步提高了粉末冶金高速鋼的質(zhì)量。
粉末冶金高速鋼優(yōu)良的組織和性能,得益于快速凝固制粉與熱等靜壓、熱擠壓致密化工藝的結合。粉末冶金法能夠生產(chǎn)常規冶金法難以和不能生產(chǎn)的高合金、富碳化物高速鋼。粉末冶金高速鋼中的合金總量高達30%以上仍具有均勻的組織;釩含量高達9.8%時(shí)可磨削性仍然良好。這一成分設計準則也可應用于其他高合金工具鋼。此外,粉末治金工藝允許加入硫來(lái)提高高速鋼的可磨削性,而不降低其力學(xué)性能。
粉末冶金高速鋼用于制造工具,主要是模具和異形刀具,特別適于切削加工韌性溶硬鋼、耐熱高合金鋼、奧氏體不銹鋼、鎳基高溫合金、鈦鋁合金等,是航空工業(yè)用于切削加工難加工的高溫合金和鈦合金的優(yōu)秀刀具材料。此外,還用來(lái)制作高強度、耐磨損和抗疲勞的結構零件,如汽車(chē)內燃機配件和飛機發(fā)動(dòng)機軸承。美國粉末冶金高速鋼的用量已超過(guò)熔煉高速鋼。
(2)稀土永磁
稀土永磁合金是稀土金屬(Sm、Nd、Pr等,以R表示)與過(guò)渡金屬(Co、Fe等,以TM表示)形成的一類(lèi)高性能永磁材料。通常將1967年出現的SmCo5(1-5型)、1977年出現的Sm2TM17(2-17型)和1983年出現的Nd-Fe-B分別稱(chēng)作第一代、第二代和第三代稀土永磁材料。其最大磁能積(BH)max分別為:
SmCo5160kJ/m3
Sm2TM7200~240kJ/m3
Nd-Fe-B240-400kJ/m3
1983年6月日本住友公司率先宣布研制成功新型永磁材料Nd-Fe-B(銣鐵硼),最大磁能積(BH)max??蛇_280kJ/m3(35MGOe)。Nd-Fe-B系永磁材料號稱(chēng)永磁之王,90年代最大磁能積(BH)max實(shí)驗室水平達416kJ/m3(52MGOe)。1993年開(kāi)發(fā)的超高性能的Nd-Fe-B永磁材料,其(BH)max達431kJ/m3(54.2MGOe)。
Nd-Fe-B永磁主要用于各種電機、起動(dòng)機、音響設備、核磁共振成像、磁懸浮、波束控制、機器人、測量?jì)x表、辦公機械、傳感器、磁耦合軸承和繼電器等。
1969年,我國開(kāi)始第一代稀土永磁的研究開(kāi)發(fā)工作,20世紀80年代初已能批量生產(chǎn)第一代和第二代稀土永磁體,用于行波管等高級磁性器件。1983年底,鋼鐵研究總院研制成功Nd-Fe-B材料,其最大磁能積(BH)max達240kJ/m3左右,1987年將(BH)max。提高到415kJ/m3以上。
(3)粉末冶金高溫合金
粉末冶金高溫合金(或稱(chēng)粉末超合金)是制造高推比新型航空發(fā)動(dòng)機零部件的最佳材料。粉末冶金高溫合金與傳統鑄鍛合金相比,其晶粒細小,組織均勻,無(wú)宏觀(guān)偏析,合金化程度高,屈服強度高,疲勞性能高,加工性能好。粉末冶金方法可以實(shí)現近終形工藝成形,因而節約材料,成本低。粉末冶金高溫合金主要用于制造航空發(fā)動(dòng)機的渦輪盤(pán)、壓氣機盤(pán)、鼓筒軸、封嚴盤(pán)、封嚴環(huán)、導風(fēng)輪及渦輪盤(pán)高壓擋板等高溫承力轉動(dòng)零件。在粉末冶金高溫合金領(lǐng)域開(kāi)展研究的有美國、俄國、英國、法國、德國、加拿大、中國、日本、意大利、瑞典以及印度等國,其中,美國、俄羅斯處于領(lǐng)先地位。
1969年,MMAllen首先用粉末冶金方法生產(chǎn)Astroloy高溫合金。1970年,SMReichman研究低碳In-100粉末冶金高溫合金,獲得超塑性;1972年美國Pratt-Whiney飛機公司以其制造F-100發(fā)動(dòng)機使用的壓氣機盤(pán)和渦輪盤(pán)等11個(gè)部件,裝在F15、F16飛機上。P&W公司僅以粉末冶金渦輪盤(pán)和凝固渦輪葉片兩項重大革新,就使F-100發(fā)動(dòng)機的推重比達到8的世界先進(jìn)水平。至1984年,該公司使用粉末高溫合金盤(pán)已超過(guò)3萬(wàn)件。1988年,GEGE公司研制出第二代粉末冶金高溫合金Rene88DT。此后,在美國軍用及民用飛機土,均使用Rene88DT粉末盤(pán)。1997年,P&W公司以DT-PIN100合金制造雙性能粉末盤(pán),裝在第四代戰斗機F22的F119發(fā)動(dòng)機上。
前蘇聯(lián)的研究工作始于20世紀60年代末,1978年,正式在軍用航空發(fā)動(dòng)機上使用粉末冶金高溫合金渦輪盤(pán)。80年代末研制出IIC-90A民用航空發(fā)動(dòng)機盤(pán)件,至1993年已累計生產(chǎn)各類(lèi)粉末高溫合金盤(pán)件2.5萬(wàn)個(gè),至1995年裝機使用盤(pán)、軸類(lèi)件總數已超過(guò)4萬(wàn)件。
(4)粉末冶金高強度鋁合金
早在20世紀40年代中期,美國鋁工業(yè)公司(Alcoa)便開(kāi)始進(jìn)行燒結鋁的研究。1952年,該公司開(kāi)發(fā)了第一代粉末冶金鋁合金材料(SAP)。這是一種Al-Al2O3,彌散強化型合金,具有優(yōu)異的高溫強度和熱穩定性。
70年代出現的快速凝固技術(shù)、機械合金化技術(shù)和復合技術(shù),促成粉末冶金高強度鋁合金問(wèn)世,并在80年代得到迅速發(fā)展??焖倌毯蜋C械合金化使鋁合金產(chǎn)生質(zhì)的飛躍,其組織明顯細化,基本消除偏析,合金成分設計范圍大大擴展,抗拉強度、彈性模量、耐腐蝕性和疲勞性能全面提高,特別是斷裂韌性與強度兼顧得較好??焖倌坦に嚳色@得亞穩相,析出細小的彌散體,這是鑄錠冶金技術(shù)所無(wú)法實(shí)現的。
出于宇航工業(yè)的需要,美國、前蘇聯(lián)、英國、原聯(lián)邦德國、日本、法國等多個(gè)國家對快速凝固鋁合金進(jìn)行了研究和開(kāi)發(fā)。美國快速凝固鋁合金7090(Al-8.0Zn-2.5Mg-1.0Cu-1.5Co)和7091(Al-6.5Zn-2.5Mg-1.5Cu-0.4Co)已商品化,Lockhead公司的S-3飛機機翼使用7091合金后重量減輕了116kg。美國Alcoa公司將快速凝固7090合金用于制造波音757-200飛機主起落架梁撐桿和主起落架艙門(mén)的絞鏈、動(dòng)筒配件、底座、齒輪等傳動(dòng)裝置,減重15%。
快速凝固耐磨鋁硅合金在日本和德國已獲應用。日本80年代開(kāi)始采用快速凝固Al-Si合金粉末制造汽車(chē)發(fā)動(dòng)機閥門(mén)彈簧座和連桿,相應構件的重量減輕60%和30%,體發(fā)動(dòng)機速度大為提高。住友電工采用快速凝固高硅Al合金制造汽車(chē)空調壓縮機轉子和葉片,使整個(gè)壓縮機減膏40%。1997年,德國PEAK公司開(kāi)始批量生產(chǎn)過(guò)共晶Al-Si合金棒坯,最大尺寸Φ300mm×2500mm。棒壞經(jīng)加工制勵Benz最新一代V8和V12發(fā)動(dòng)機汽缸襯套。
(5)粉末冶金金剛石-金屬工具材料
粉末冶金技術(shù)于20世紀20年代進(jìn)人金剛石工具制著(zhù)業(yè),逐步取代機械卡固法和青銅澆鑄嵌鑲法而占據主導的位。以粉末冶金法制造金剛石-金屬工具,工藝簡(jiǎn)便,成本低,效率高,產(chǎn)品質(zhì)量?jì)?yōu)良。1930年,以粉末冶金工藝(混合-壓制-燒結)制造的金剛石砂輪和鋸片誕生,并迅速在硬質(zhì)材料加工中廣泛應用。20世紀30年代末期,粉末冶金浸漬法制造的金剛石地質(zhì)鉆頭投入應用。40年代,大型復雜型面金剛石石油鉆頭出現,在地質(zhì)、石油硬地層鉆探中易示出威力。
1953年和1954年,瑞典和美國成功合成金剛石。人造金剛石粒度較細,適合制造磨具的要求,但機械卡固無(wú)法將工具成形。以粉末冶金法制造人造金剛石工具,是粉末冶金技術(shù)對金剛石工業(yè)再一次推動(dòng)。粉末冶金人造金剛石工具包括:砂輪修整工具,金屬研磨工具,拉絲模,石油和地質(zhì)鉆頭,建筑工程施工工具,半導體加工工具,以及石材、玉器、玻璃和陶瓷加工工具等。
高溫高壓燒結金剛石聚晶體(PCD,polycrystallinitydiamond)的出現,結束了磨料級金剛石限于制作磨具的歷史,是金剛石工具業(yè)一項重大成就。燒結聚晶體的綜合力學(xué)性能優(yōu)于天然金剛石,它不存在解理面,性能各向同性,耐沖擊性較好,而且,使金剛石加工中產(chǎn)生的大量金剛石微粉得到利用。金剛石復合片即燒結金剛石聚晶/硬質(zhì)合金復合體,由金剛石聚晶體層復合在硬質(zhì)合金基體上構成,具有良好的綜合性能。
人造金剛石聚晶體出現于20世紀60年代,1964年美國GE公司DaLai首次取得以金屬黏結劑促使金剛石顆粒之間產(chǎn)生直接結合的美國專(zhuān)利。英國于1966年、前蘇聯(lián)于1967年報道了有關(guān)這方面的研究成果。1972年,美國GE公司公布并隨后生產(chǎn)的Compax,是具有代表性的產(chǎn)品。我國鄭州磨料磨具磨削研究所于1969~1971年對PCD進(jìn)行了研制,1972年在國際上首次將PCD金剛石燒結體JRSN用于巖層錨進(jìn)。1987年我國研制成功人造金剛石/硬質(zhì)合金復合材料。
(6)納米粉末材料
納米材料包括納米粉末材料、納米多孔材料和納米致密材料。納米粉末微粒尺寸一般在1~100nm范圍。對這一粒度范圍粉末系的研究,可追溯到19世紀60年代膠體化學(xué)誕生的時(shí)候。20世紀40年代也有此粒度范圍粉末的報道,只不過(guò)稱(chēng)為超細粉末,定義粒度范圍為0.01~0.1μm(或以?為度量單位)。1962年,久保發(fā)現金屬超微粒子與宏觀(guān)物體的熱性質(zhì)不同,提出久保效應。1963年出版的HHHAuser所編的《NewTypesofMetalPowders》一書(shū)中介紹,用60kW電子束爐制備的鐵、鋁、鎳、銅、鉻、鉀、鈕和鎢粉,其粒度小于0.5um。1984年,RBerringer和HGleiter等人采用情性氣體蒸發(fā)與原位壓制、燒結方法獲得納米晶金屬塊體,并首次提出納米晶材料的術(shù)語(yǔ),納米粉末材料作為一種工程材料才正式登上科技舞臺。在1990年召開(kāi)的首屆世界納米科學(xué)技術(shù)學(xué)術(shù)會(huì )議上,正式提出將納米材料科學(xué)列為材料科學(xué)的一個(gè)新的分支。90年代研究工作取得進(jìn)展,應用逐漸增加。
制取納米材料有多種方法,粉末冶金法是常用的一種。
采用機械合金化技術(shù)制取納米品材料,能合成許多采用熔體快淬、蒸發(fā)冷凝等技術(shù)不能獲得的新型合金材料,而且,工藝簡(jiǎn)單,生產(chǎn)效率高,實(shí)用化可能性大。將納米級粉末通過(guò)在過(guò)冷液相區進(jìn)行燒結制成塊體材料,其關(guān)鍵是防止納米晶粒在燒結過(guò)程中長(cháng)大。熱壓、熱等靜壓、反應熱壓、微波燒結、放電等離子體燒結、等離子體活化燒結以及激光燒結,是已被采用的燒結技術(shù)。
納米顆粒的尺度處于原子、分子、原子團簇與宏觀(guān)物體(包括大于100mm的粉末顆粒)的過(guò)渡段,其性態(tài)既不同于分子和原子等微觀(guān)粒子,又與宏觀(guān)物體差別很大。納米顆粒具有量子尺寸效應、小尺寸效應、表面效應和宏觀(guān)量子隧道效應,因而具有某些獨特的性質(zhì)。這些性質(zhì)在催化、濾光、光吸收、儲氫、傳感、磁介質(zhì)、醫療、保健以及結構材料、工具材料等方面,有著(zhù)喜人的應用前景。納米粉末材料的開(kāi)發(fā),拓展了粉末冶金材料的領(lǐng)域。
(7)非晶態(tài)合金粉末材料
非晶態(tài)合金亦稱(chēng)玻璃態(tài)合金。這一類(lèi)金屬和合金的原子結構不是長(cháng)程有序,而是處于原子無(wú)序的液態(tài)“凍結”狀態(tài)。制取非晶態(tài)合金的最早工作是JKramer進(jìn)行的,他于1934年和1937年報道以蒸發(fā)沉積法成功制取非晶態(tài)合金。1950年,ABrenner等人用電沉積法制成Ni-P非晶態(tài)合金。1958年,RBPond的熔體快淬-破碎法獲得美國專(zhuān)利。1960年,加利福尼亞理工學(xué)院PDuwez等人直接將熔融金屬?lài)婌F淬火制成非晶態(tài)合金Au70Si60。1969年,賓夕法尼亞大學(xué)采用圓筒離心急冷法,1970年哈佛大學(xué)采用雙輥法獲得非晶態(tài)合金帶材。此后,以快速凝固技術(shù)制取非晶態(tài)合金引起人們高度重視。1973年,美國Allied公司首先將非晶態(tài)合金帶材商品化。20世紀80年代,非晶態(tài)合金成為材料學(xué)界熱點(diǎn)開(kāi)發(fā)項目之一,人們對其制取技術(shù)和應用進(jìn)行了大量的研究。
非晶態(tài)合金材料的價(jià)值在于其獨特的性能,包括磁性能、電性能、力學(xué)性能和耐腐蝕性能。非晶態(tài)合金粉末材料主要用作磁性材料,還可用作耐磨材料、耐蝕材料、結構材料、涂層材料、釬焊材料、儲氫材料、金剛石工具黏結劑和催化劑等。1978年,Alcoa公司以熱壓法制造出MA87鋁合金坯塊,經(jīng)軋制后鍛成飛機零件。1982年,RRay用Ni53Mo36Fe9B2非晶態(tài)合金粉末材料采取反玻璃化措施制成微晶合金,以其制成鋁合金鑄造模壽命比H13鋼高1倍。1984年,美國Allied公司已有非晶態(tài)合金粉末材料產(chǎn)品上市:低頻用鐵基非晶磁粉芯PS-21和1~50Hz用鎳基非晶磁粉芯PMB-1。20世紀80年代,非晶態(tài)合金粉末在磁粉芯、磁性流體、黏結磁體等方面已有應用。
80年代中期,我國冶金部鋼鐵研究總院采用常規霧化工藝,研制成功M80S20和FCP兩種鐵基非品態(tài)合金粉末材料。1989年,上海鋼鐵研究所以非晶態(tài)帶材破碎球磨制得Fe47Ni29V2Si8B14粉末,用硅樹(shù)脂為黏結絕緣劑經(jīng)壓制成形,制得高頻磁粉芯,用作光通訊的光端機高頻扼流圈。
感覺(jué)小編寫(xiě)得不錯,給小編點(diǎn)個(gè)贊吧!
點(diǎn)贊最近更新
-
粉末冶金的技術(shù)以及常見(jiàn)瑕疵
時(shí)間:07-10 閱讀:11次
-
粉末冶金射出成型和模壓的成本
時(shí)間:07-09 閱讀:21次
-
不銹鋼粉末冶金和精鑄的區別
時(shí)間:07-08 閱讀:29次
-
粉末冶金件的碳氮熱處理工藝
時(shí)間:07-07 閱讀:37次
-
粉末冶金如何增加強度的方法
時(shí)間:07-06 閱讀:42次
-
粉末冶金模具與壓鑄模件的區別
時(shí)間:07-05 閱讀:49次
-
粉末冶金材料的熱處理工藝試驗
時(shí)間:07-04 閱讀:59次
-
氫氣在粉末冶金應用中的應用
時(shí)間:07-03 閱讀:55次
欄目
熱門(mén)閱讀
-
粉末冶金精度高嗎?精度可以達到多少?
時(shí)間:07-04 閱讀:9841次
-
粉末冶金強度多少?強度不足原因是什么?
時(shí)間:09-23 閱讀:7326次
-
粉末冶金與翻砂鑄造的優(yōu)劣對比
時(shí)間:08-25 閱讀:6718次
-
粉末冶金與壓鑄的的優(yōu)劣對比
時(shí)間:08-25 閱讀:6291次
-
粉末冶金與切削加工的優(yōu)劣對比
時(shí)間:11-16 閱讀:6097次
-
粉末冶金究竟是什么?其特點(diǎn)以及工藝流程怎么樣?立馬為你分享
時(shí)間:02-24 閱讀:5447次
-
粉末冶金強度怎么?為什么還被廣泛應用?
時(shí)間:10-29 閱讀:5439次
-
粉末冶金工藝優(yōu)缺點(diǎn)分析,一文讀懂
時(shí)間:07-08 閱讀:5302次
-
干貨:粉末冶金制品的13種成型技術(shù)
時(shí)間:12-16 閱讀:4229次
-
粉末冶金與沖裁成型的優(yōu)劣對比
時(shí)間:11-16 閱讀:3491次